

DCV-003-1161003

Seat No.

M. Sc. (Sem. I) Examination

August - 2022

Mathematics: CMT - 1003

(Topology - I)

Faculty Code: 003

Subject Code: 1161003

Time : $2\frac{1}{2}$ Hours]

[Total Marks: 70

Instructions: (1) Attempt any five questions from the following.

- (2) There are total ten questions.
- (3) Each question carries equal (14) marks.
- 1 Answer the following:
 - (1) Define with example: Topology on a set.
 - (2) Define with example:
 - (a) Discrete Topology.
 - (b) Indiscrete Topology.
 - (3) Is the collection $\mathfrak{B} = \{\{x\} \mid x \in X\}$ is basis for any set X or not? Justify your answer.
 - (4) Define with example : Usual Topology on \mathbb{R} .
 - (5) Define with example : Order Topology.
 - (6) Justify whether every sequence in an indiscrete topological space is convergent or not?
 - (7) Define with example : Continuous Function.
- 2 Answer the following:
 - (1) Let X be any topological space and Y be indiscrete topological space. Is every function $f: X \to Y$ continuous? Justify your answer.
 - (2) Define with example: Euclidean Metric.

- (3) Let X and Y be topological spaces. Consider the function $\pi_2: X \to Y$ defined by $\pi_2(x, y) = y$, for all $(x, y) \in X \times Y$. Is π_2 is continuous? Justify your answer.
- (4) Define with example: Interior point of a set.
- (5) Define with example: Metric on a set.
- (6) Define with example: Linear Continuum.
- (7) Define with example: Uniform Convergence.

3 Answer the followings:

- (a) On the set of real numbers \mathbb{R} , define $\tau_f = \{U \subseteq \mathbb{R} / \mathbb{R} U \text{ is either finite or all of } \mathbb{R} \}$. Prove that, τ_f is topology on \mathbb{R}
- (b) State and prove, Pasting Lemma.

4 Answer the followings:

- (a) Let X be a topological space. Suppose \mathcal{C} is a collection of open sets such that for each open set U and $x \in U$, there is an element C of \mathcal{C} such that $x \in C \subset U$. Then prove that, \mathcal{C} is basis for the topology of X.
- (b) Let X be a topological space and \mathfrak{B} be a basis for the topology on X. Let Y be a subspace of X. Define $\mathfrak{B}_Y = \{B \cap Y \mid B \in \mathfrak{B}\}$. Prove that, \mathfrak{B}_Y is basis for the subspace topology.

5 Answer the followings:

- (a) Let X be any non-empty set and let $\left\{\tau_{\beta}\right\}_{\beta\in I}$ be a collection of topologies on X. Prove that, $\bigcap_{\beta\in I}\tau_{\beta}$ is topology on X. Also prove that is $S\subset P(X)$, then there is smallest topology on X which contains S.
- (b) Let X and Y be topological spaces and π_1, π_2 be the projection maps. Prove that,

$$\mathcal{S} = \left\{ \pi_1^{-1}(U)/U \text{ is open in } X \right\} \cup \left\{ \pi_2^{-1}(V) : V \text{ is open in } Y \right\}$$

is a subbasis for the product topology on $X \times Y$.

6 Answer the followings:

- (a) Let X be a topological space and Y be a subspace of X. Let A be a subset of Y and \overline{A} denote the closure of A in X. Prove that, the closure of A in Y equals $\overline{A} \cap Y$.
- (b) Prove that, the topologies of \mathbb{R}_l and \mathbb{R}_k are strictly finer than the standard topology of \mathbb{R} , but are not comparable with each other.

7 Answer the followings:

- (a) Let X and Y be topological spaces. Let S be a sub basis for the topology on Y. Let $f: X \to Y$ be a function. Prove that, f is continuous if and only if $f^{-1}(S)$ is open in X, for every $S \in S$.
- (b) State and prove, Uniform limit theorem.

8 Answer the followings:

- (a) Let X and Y be topological spaces. Let $f: X \to Y$ be a function. If for every closed set B in Y, the set $f^{-1}(B)$ is closed in X then prove that, for each $x \in X$ and each neighbourhood V of x such that $f(U) \subseteq V$.
- (b) Let X and Y be topological spaces. Let $f: X \to Y$ be a function. If X can be written as the union of open sets U_{α} such that $f|_{U_{\alpha}}$ is continuous for each α then prove that, f is continuous.

9 Answer the followings:

- (a) State and prove, Sequence Lemma.
- (b) Let (X, d) be metric space. Prove that, $\mathcal{B}_d = \left\{ B_d(x, r) \middle/ x \in X, r > 0 \right\} \text{ is a basis for the metric space}$ (X, d).

10 Answer the followings:

- (a) Prove that, the topologies on \mathbb{R}^n induced by the Euclidean metric d and the square metric ρ are the same as the product topology on \mathbb{R}^n .
- (b) Let X and Y be topological spaces. Prove that, if $f: X \to Y$ is a continuous function then for every sequence $\{x_n\}$ converging to x, the sequence $\{f(x_n)\}$ converges to f(x). Also prove that the converse holds if X is metrizable.